12 research outputs found

    A New Concept to Measure the Ambipolar Electric Field Driving Ionospheric Outflow

    Get PDF
    Over the last few decades, the role of ionospheric outflow for the loss of atmospheric constituents, as a plasma supplier to the magnetosphere and hence for the evolution of the Earth’s atmosphere has been recognized. A substantial amount of the outflow is thought to be caused by the presence of an ambipolar electric field aligned with the open magnetic field lines of the polar region. To better understand how the changes in outflow are influenced by the solar and geomagnetic activity, it is critical to get a better understanding of the impact of this electric field, and to be able to measure it under various conditions. However, such measurements are not possible with present techniques. In this paper, we propose a new technique to measure the tiny electric field. This technique builds on existing instrument technology but extends the capability to measure the very small electric fields. We present the underlying design concept and demonstrate that this concept is viable and able to measure the very small ambipolar electric fields thought to play a key role in the polar wind.publishedVersio

    20 Years of Cluster Observations: The Magnetopause,

    Get PDF
    The terrestrial magnetopause forms the boundary between the solar wind plasma with its embedded interplanetary magnetic field on one side, and the terrestrial magnetosphere, dominated by Earth's dipole field, on the other side. It is therefore a key region for the transfer of mass, momentum, and energy from the solar wind to the magnetosphere. The Cluster mission, comprising a constellation of four spacecraft flying in formation was launched more than 20 years ago to study boundaries in space. During its lifetime, Cluster has provided a wealth of new knowledge about the magnetopause. In this paper, we give an overview of Cluster-based studies of this boundary, and highlight a selection of interesting results.publishedVersio

    Quantifying the Lobe Reconnection Rate During Dominant IMF By Periods and Different Dipole Tilt Orientations

    Get PDF
    Lobe reconnection is usually thought to play an important role in geospace dynamics only when the Interplanetary Magnetic Field (IMF) is mainly northward. This is because the most common and unambiguous signature of lobe reconnection is the strong sunward convection in the polar cap ionosphere observed during these conditions. During more typical conditions, when the IMF is mainly oriented in a dawn-dusk direction, plasma flows initiated by dayside and lobe reconnection both map to high-latitude ionospheric locations in close proximity to each other on the dayside. This makes the distinction of the source of the observed dayside polar cap convection ambiguous, as the flow magnitude and direction are similar from the two topologically different source regions. We here overcome this challenge by normalizing the ionospheric convection observed by the Super Dual Aurora Radar Network (SuperDARN) to the polar cap boundary, inferred from simultaneous observations from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE). This new method enable us to separate and quantify the relative contribution of both lobe reconnection and dayside/nightside (Dungey cycle) reconnection during periods of dominating IMF By. Our main findings are twofold. First, the lobe reconnection rate can typically account for 20% of the Dungey cycle flux transport during local summer when IMF By is dominating and IMF Bz ≄ 0. Second, the dayside convection relative to the open/closed boundary is vastly different in local summer versus local winter, as defined by the dipole tilt angle.publishedVersio

    A New Concept to Measure the Ambipolar Electric Field Driving Ionospheric Outflow

    No full text
    Over the last few decades, the role of ionospheric outflow for the loss of atmospheric constituents, as a plasma supplier to the magnetosphere and hence for the evolution of the Earth’s atmosphere has been recognized. A substantial amount of the outflow is thought to be caused by the presence of an ambipolar electric field aligned with the open magnetic field lines of the polar region. To better understand how the changes in outflow are influenced by the solar and geomagnetic activity, it is critical to get a better understanding of the impact of this electric field, and to be able to measure it under various conditions. However, such measurements are not possible with present techniques. In this paper, we propose a new technique to measure the tiny electric field. This technique builds on existing instrument technology but extends the capability to measure the very small electric fields. We present the underlying design concept and demonstrate that this concept is viable and able to measure the very small ambipolar electric fields thought to play a key role in the polar wind

    Heavy Metal and Rock in Space: Cluster RAPID Observations of Fe and Si

    No full text
    Metallic and silicate ions carry essential information about the evolution of the Earth and near-Earth small bodies. Despite this, there has so far been very little focus on ions with atomic masses higher than oxygen in the terrestrial magnetosphere. In this paper, we report on abundances and properties of energetic ions with masses corresponding to that of silicon (Si) and iron (Fe) in Earth's geospace. The results are based on a newly derived data product from the Research with Adaptive Particle Imaging Detectors on Cluster. We find traces of both Si and Fe in all of the regions covered by the spacecraft, with the highest occurrence rates and highest intensities in the inner magnetosphere. We also find that the Fe and Si abundances are modulated by solar activity. During solar maximum, the probability of observing Fe and Si in geospace increases significantly. On the other hand, we find little or no direct correlation between geomagnetic activity and Si and Fe abundance in the magnetosphere. Both Si and Fe in the Earth's magnetosphere are inferred to be primarily of solar wind origin

    20 Years of Cluster Observations: The Magnetopause,

    No full text
    The terrestrial magnetopause forms the boundary between the solar wind plasma with its embedded interplanetary magnetic field on one side, and the terrestrial magnetosphere, dominated by Earth's dipole field, on the other side. It is therefore a key region for the transfer of mass, momentum, and energy from the solar wind to the magnetosphere. The Cluster mission, comprising a constellation of four spacecraft flying in formation was launched more than 20 years ago to study boundaries in space. During its lifetime, Cluster has provided a wealth of new knowledge about the magnetopause. In this paper, we give an overview of Cluster-based studies of this boundary, and highlight a selection of interesting results

    Quantifying the Lobe Reconnection Rate During Dominant IMF By Periods and Different Dipole Tilt Orientations

    No full text
    Lobe reconnection is usually thought to play an important role in geospace dynamics only when the Interplanetary Magnetic Field (IMF) is mainly northward. This is because the most common and unambiguous signature of lobe reconnection is the strong sunward convection in the polar cap ionosphere observed during these conditions. During more typical conditions, when the IMF is mainly oriented in a dawn-dusk direction, plasma flows initiated by dayside and lobe reconnection both map to high-latitude ionospheric locations in close proximity to each other on the dayside. This makes the distinction of the source of the observed dayside polar cap convection ambiguous, as the flow magnitude and direction are similar from the two topologically different source regions. We here overcome this challenge by normalizing the ionospheric convection observed by the Super Dual Aurora Radar Network (SuperDARN) to the polar cap boundary, inferred from simultaneous observations from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE). This new method enable us to separate and quantify the relative contribution of both lobe reconnection and dayside/nightside (Dungey cycle) reconnection during periods of dominating IMF By. Our main findings are twofold. First, the lobe reconnection rate can typically account for 20% of the Dungey cycle flux transport during local summer when IMF By is dominating and IMF Bz ≄ 0. Second, the dayside convection relative to the open/closed boundary is vastly different in local summer versus local winter, as defined by the dipole tilt angle

    Curlometer Technique and Applications

    No full text
    We review the range of applications and use of the curlometer, initially developed to analyze Cluster multi-spacecraft magnetic field data; but more recently adapted to other arrays of spacecraft flying in formation, such as MMS small-scale, 4-spacecraft configurations; THEMIS close constellations of 3–5 spacecraft, and Swarm 2–3 spacecraft configurations. Although magnetic gradients require knowledge of spacecraft separations and the magnetic field, the structure of the electric current density (for example, its relative spatial scale), and any temporal evolution, limits measurement accuracy. Nevertheless, in many magnetospheric regions the curlometer is reliable (within certain limits), particularly under conditions of time stationarity, or with supporting information on morphology (for example, when the geometry of the large scale structure is expected). A number of large-scale regions have been covered, such as: the cross-tail current sheet, ring current, the current layer at the magnetopause and field-aligned currents. Transient and smaller scale current structures (e.g., reconnected flux tube or dipolarisation fronts) and energy transfer processes. The method is able to provide estimates of single components of the vector current density, even if there are only two or three satellites flying in formation, within the current region, as can be the case when there is a highly irregular spacecraft configuration. The computation of magnetic field gradients and topology in general includes magnetic rotation analysis and various least squares approaches, as well as the curlometer, and indeed the added inclusion of plasma measurements and the extension to larger arrays of spacecraft have recently been considered

    The Relationship Between Large Scale Thermospheric Density Enhancements and the Spatial Distribution of Poynting Flux

    Get PDF
    Large thermospheric neutral density enhancements in the cusp region have been examined for many years. The Challenging Minisatellite Payload (CHAMP) satellite for example has enabled many observations of the perturbation, showing that it is mesoscale in size and exists statistically over solar cycle timescales. Further studies examining the relationship with magnetospheric energy input have shown that fine‐scale Poynting fluxes are associated with the density perturbations on a case‐by‐case basis, whilst others have found that mesoscale downward fluxes also exist in the cusp region statistically. In this study, we use nearly 8 years of the overlapping Super Dual Auroral Radar Network and Active Magnetosphere and Planetary Electrodynamics Response Experiment datasets to generate global‐scale patterns of the high‐latitude and height‐integrated Poynting flux into the ionosphere, with a time resolution of 2 min. From these, average patterns are generated based on the interplanetary magnetic field orientation. We show the cusp is indeed an important feature in the Poynting flux maps, but the magnitude does not correlate well with statistical neutral mass density perturbations observed by the CHAMP satellite on similar spatial scales. Importantly, the lack of correlation between mesoscale height‐integrated Poynting fluxes and the cusp neutral mass density enhancement gives possible insight into other processes that may account for the discrepancy, such as energy deposition at finer scale sizes or at higher altitudes than captured

    Anomalous Reconnection Layer at Earth’s Dayside Magnetopause

    No full text
    Observations by the Magnetospheric Multiscale spacecraft (MMS) of an unusual layer, located between the dayside magnetosheath and the magnetosphere, alternating with encounters with the magnetosheath during an extended time period between December 31, 2015 and January 01, 2016, when the interplanetary magnetic field was strongly southward and the Earth's dipole tilt large and negative, are presented. It appears to have been magnetically connected to both magnetosphere and magnetosheath. The layer appears to be located mostly on closed field lines and was bounded by a rotational discontinuity (RD) at its magnetosheath edge and by the magnetosphere on its earthward side. A separatrix layer, with heated magnetosheath electrons streaming unidirectionally along the field lines, was present sunward of the RD. We infer that the layer was started by a dominant reconnection site well north of the spacecraft and that it may have gained additional width, from a large drop in solar wind density and ram pressure, which preceded the beginning of the event by more than an hour. Relative to the magnetosheath, in which the magnetic field was strongly southward, this unusual layer was characterized by a less southward, more dawnward magnetic field of lower magnitude. The plasma density and flow speed in the region were lower than in the magnetosheath, albeit with Alfvénic jetting occurring at the magnetosheath edge as well as at the magnetospheric edge of the layer. The closing of the magnetic field lines requires the existence of another reconnection site, located southward/tailward of MMS
    corecore